If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x+13x-91=0
We add all the numbers together, and all the variables
x^2+6x-91=0
a = 1; b = 6; c = -91;
Δ = b2-4ac
Δ = 62-4·1·(-91)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-20}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+20}{2*1}=\frac{14}{2} =7 $
| 2x=1/2+3/4 | | 25=7(2x+9)+8(x+5) | | -.7x-.6=-.2x-.42 | | y=0.5(2)+10 | | 2x-17=19x-68 | | t(7t^2+6)=0 | | 15r+17=13r+14 | | x^2+4x−5=0 | | 7h=224 | | 4h=392 | | 4/7=56h | | x(x-8+5=x-8+5) | | 5x^2x^2-500=0 | | 350+.09s=1655 | | 3x6+6=24 | | 2y+6=6y+30 | | 7.9x-5-7.8x=0.1x-5 | | x^2-7x+13x+6=0 | | 2x-1/3x-4=1/8 | | x^2+18x+37=0 | | P(x)=5(5-x)+5x | | 5/12t+3+1/3t=t-21 | | (x+9)^2=44 | | (x+9)^2-44=0 | | 120=5(x-70)+45 | | (2x-3)^3(x^2-9)^2+(2x-3)^5(x^2-9)=0 | | 9(y+5)=5y+21 | | 2x^2+18x+37=0 | | -5x-47=-7(x+5) | | 2(v+4)=4v-8 | | -1x^2+(x+4)^2=16 | | x=8x-72 |